کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
656585 1458050 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical and experimental investigation on the effects of diameter and length on high mass flux subcooled flow boiling in horizontal microtubes
ترجمه فارسی عنوان
بررسی عددی و تجربی در مورد اثرات قطر و طول در جوش داده شده جوش با جریان انباشته شده بالا در میکرو تیوب های افقی
کلمات کلیدی
جریان مایکروویو جوش، جریان جوش زیرآبی، جوش جوش بالا جوش، شبیه سازی عددی، انتقال گرما جوش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
چکیده انگلیسی


• Subcooled flow boiling was investigated numerically and experimentally in microtubes.
• The Eulerian multiphase model is employed.
• The effects of inlet temperature, mass flux, size and heated length were investigated.
• Local heat transfer coefficients and void fractions were presented.
• Heat transfer coefficients increased with void fraction and decreasing subcooling.

High mass flux subcooled flow boiling was investigated both numerically and experimentally in horizontal microtubes. Microtubes with inner diameters of ∼600 and ∼900 μm, and outer diameters of ∼900 and ∼1100 μm, and heated lengths of 6 and 12 cm were tested in order to investigate the effects of diameter and heated length on subcooled flow boiling at high mass and heat fluxes. In the experimental part, microtubes made of stainless steel were used, and deionized water was as the working fluid. In the numerical part, the two-phase Eulerian method was adopted using the finite volume approach. Numerical results showed a good agreement with experimental results. Heat transfer coefficients were higher in the microtubes with smaller diameters, while longer microtubes resulted in higher heat transfer coefficient. The results indicated that smaller pressure drops were achieved for shorter microchannels along with higher heat fluxes. Local heat transfer coefficients were presented along the microtube to provide an understanding on local flow boiling characteristics. As the vapor quality and void fraction increased, higher heat transfer coefficients were obtained. With the increase in mass flux, an enhancement in boiling heat transfer was observed implying convective heat transfer effects on flow boiling along with nucleate boiling. Furthermore, heat transfer coefficient increased with decreasing inlet subcooling.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 92, January 2016, Pages 824–837
نویسندگان
, ,