کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6595525 458533 2014 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identification of probabilistic graphical network model for root-cause diagnosis in industrial processes
ترجمه فارسی عنوان
شناسایی مدل شبکه گرافیکی احتمالی برای تشخیص علت ریشه در پروسه های صنعتی
کلمات کلیدی
مدل گرافیکی احتمالی، رابطه رابطه اثر، ساختار یادگیری، ماتریس بروز، زنجیره مارکوف مونت کارلو شبیه سازی، تشخیص ریشه،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی
Identification of faults in process systems can be based purely on measurement (e.g. PCA), or can exploit knowledge of process model structure to construct a causal network. This work introduces a method to identify most likely causal network in cases when process model is not known. An incidence matrix, showing location of measurements in the plant network structure, and historical process data are used to identify the optimal causal network structure by means of maximizing Bayesian scores for alternative causal networks. Causal subnetworks, corresponding to subgraphs of the process network, are identified by finding the most probable graph based on highest posterior probability of graph features computed via Markov Chain Monte Carlo simulation. Novel Bayesian contribution indices within the probabilistic graphical network are proposed to identify the potential root-cause variables. Application to Tennessee Eastman Chemical plant demonstrates that the presented method is significantly more accurate than the current methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 71, 4 December 2014, Pages 171-209
نویسندگان
, , ,