کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6595551 | 458533 | 2014 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive monitoring of the process operation based on symbolic episode representation and hidden Markov models with application toward an oil sand primary separation
ترجمه فارسی عنوان
نظارت تطبیقی عملیات فرآیند براساس نمایندگی قسمت نمادین و مدل های پنهان مارکوف با استفاده از جداسازی اولیه جداسازی شن و ماسه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
چکیده انگلیسی
This paper presents a novel procedure for classification of normal and abnormal operating conditions of a process when multiple noisy observation sequences are available. Continuous time signals are converted to discrete observations using the method of triangular representation. Since there is a large difference in the means and variances of the durations and magnitudes of the triangles at different operating modes, adaptive fuzzy membership functions are applied for discretization. The expectation maximization (EM) algorithm is used to obtain parameters of the different modes for the durations and magnitudes assuming that states transit to each other according to a Markov chain model. Applying Hamilton's filter, probability of each state given new duration and magnitude is calculated to weight the membership functions of each mode previously obtained from a fuzzy C-means clustering. After adaptive discretization step, having discrete observations available, the combinatorial method for training hidden Markov models (HMMs) with multiple observations is used for overall classification of the process. Application of the method is studied on both simulation and industrial case studies. The industrial case study is the detection of normal and abnormal process conditions in the primary separation vessel (PSV) of an oil sand industry. The method shows an overall good performance in detecting normal and risky operating conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 71, 4 December 2014, Pages 281-297
Journal: Computers & Chemical Engineering - Volume 71, 4 December 2014, Pages 281-297
نویسندگان
Nima Sammaknejad, Biao Huang, Alireza Fatehi, Yu Miao, Fangwei Xu, Aris Espejo,