کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6595554 458533 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-causal data-driven monitoring of the process correlation structure: A comparison study with new methods
ترجمه فارسی عنوان
نظارت بر داده های ناخواسته ناشی از ساختار همبستگی فرایند: مطالعه مقایسه ای با روش های جدید
کلمات کلیدی
نظارت بر فرایند ساختار همبستگی، فرآیندهای پویای چند متغیره، تحول حساسیت داده ها، همبستگی جزئی، همبستگی مرزی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی
Current approaches for monitoring the process correlation structure lag significantly behind the effectiveness already achieved on the detection of changes in the mean levels of process variables. We demonstrate that this is true, even for well-known methodologies such as MSPC-PCA and related approaches. On the other hand, data-driven process monitoring approaches are typically non-causal and based on the marginal covariance between process variables. We also show that such global measure of association is unable, by design, to effectively discern changes in the local correlation structure of the system and propose, for the first time, the explicit use of partial correlations in process monitoring. As a second contribution, we introduce the use of sensitivity enhancing data transformations (SET) with the ability to maximize the detection ability of all monitoring procedures based on (partial or marginal) correlation, and show how they can be constructed. Results confirm the added-value of the proposed monitoring scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 71, 4 December 2014, Pages 307-322
نویسندگان
, ,