کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6595651 | 458533 | 2014 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An interior-point method for efficient solution of block-structured NLP problems using an implicit Schur-complement decomposition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this work, we address optimization of large-scale, nonlinear, block-structured problems with a significant number of coupling variables. Solving these problems using interior-point methods requires the solution of a linear system that has a block-angular structure at each iteration. Parallel solution is possible using a Schur-complement decomposition. In an explicit Schur-complement decomposition, the computational cost of forming and factorizing the Schur-complement is prohibitive for problems with many coupling variables. In this paper, we show that this bottleneck can be overcome by solving the Schur-complement equations implicitly, using a quasi-Newton preconditioned conjugate gradient method. This new algorithm avoids explicit formation and factorization of the Schur-complement. The computational efficiency of this algorithm is compared with the serial full-space approach, and the serial and parallel explicit Schur-complement approach. These results show that the PCG Schur-complement approach dramatically reduces the computational cost for problems with many coupling variables.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 71, 4 December 2014, Pages 563-573
Journal: Computers & Chemical Engineering - Volume 71, 4 December 2014, Pages 563-573
نویسندگان
Jia Kang, Yankai Cao, Daniel P. Word, C.D. Laird,