کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6602977 | 1424084 | 2018 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Electrochemical fabrication of 3D quasi-amorphous pompon-like Co-O and Co-Se hybrid films from choline chloride/urea deep eutectic solvent for efficient overall water splitting
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
The development of earth-abundant, low-cost, highly active, and durable bifunctional catalysts competent for efficient electrochemical water-splitting is intensively demanding and of vital importance to realize high-purity hydrogen production. Herein, we report that 3D quasi-amorphous pompon-like Co-O and Co-Se hybrid films grown on copper foil (Co-O@Co-Se/Cu) can be electrochemically synthesized from a choline chloride and urea mixed deep eutectic solvent, denoted as Reline, via a facile one-step electrochemical deposition approach. Benefiting from the induction effect of Se, the obtained Co-O@Co-Se/Cu hybrid electrode exhibits strongly enhanced catalytic activity. The optimal Co-O@Co-Se/Cu sample shows good activity and excellent durability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline solution with low overpotentials of 85â¯mV for HER and 340â¯mV for OER, respectively to reach a catalytic current of 10â¯mAâ¯cmâ2. The Co-Se component within the hybrid films is gradually converted into Co-O species during the course of the OER, which are responsible for the good OER performance. In addition, when performed as bifunctional catalysts in a two-electrode configured electrolyzer, the Co-O@Co-Se/Cu couple displays a water-splitting current of 10â¯mAâ¯cm-2â¯at 1.65â¯V with reasonable stability for long-term electrolysis over 100â¯h. This simple one-step electrochemical synthesis route operated in the Reline-based deep eutectic solvent is demonstrated as an efficient strategy to fabricate active non-noble-free electrocatalysts toward overall water splitting applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 273, 20 May 2018, Pages 71-79
Journal: Electrochimica Acta - Volume 273, 20 May 2018, Pages 71-79
نویسندگان
W.Q. Yang, Y.X. Hua, Q.B. Zhang, H. Lei, C.Y. Xu,