کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6611834 459565 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transient analysis of carbon monoxide transport phenomena and adsorption kinetics in HT-PEMFC during dynamic current extraction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Transient analysis of carbon monoxide transport phenomena and adsorption kinetics in HT-PEMFC during dynamic current extraction
چکیده انگلیسی
This paper investigates the transport phenomena of carbon monoxide (CO) and adsorption kinetics, in a high-temperature proton exchange membrane fuel cell (HT-PEMFC) during step-wise current extraction (step-change in current extraction). Step-wise current extraction is a common process done to accommodate a sudden power surge during an operation. Since HT-PEMFCs are capable of handling high impurity of CO, hydrogen fuel that is contaminated with trace amount of CO is usually considered for commercial benefits. Thus, a transient three-dimensional isothermal anodic electro-kinetic numerical model is developed to determine the effect of operating parameters such as fuel cell temperature, CO inlet (initial) concentration, step-change of current density and dwell time on the transport phenomena of CO and adsorption kinetics. In addition, geometrical factors such as the catalyst layer (CL) and gas diffusion layer (GDL) porosity are also varied as well. The results show that the above-mentioned operating parameters can affect the maximum CO concentration at the CL, especially at the outlet of the channel. Specifically, a reduction of fuel cell temperature can significantly increase the CO concentration near the outlet, while increasing CO inlet (initial) concentration, step-change amplitude of current density and current density dwell time can cause an increase in CO concentration at the outlet, albeit to different extent. In addition, the increase in the porosity of CL and GDL, results in the reduction of the maximum CO concentration at the outlet, albeit to different extent. In addition, the CO and hydrogen surface coverage fractions are also affected by the variance of the above mentioned parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 165, 20 May 2015, Pages 288-300
نویسندگان
, ,