کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
66165 48417 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
First-principles study of the methyl formate pathway of methanol steam reforming on PdZn(1 1 1) with comparison to Cu(1 1 1)
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
First-principles study of the methyl formate pathway of methanol steam reforming on PdZn(1 1 1) with comparison to Cu(1 1 1)
چکیده انگلیسی

Methanol steam reforming (MSR), catalyzed by the PdZn alloy, produces hydrogen gas and carbon dioxide with high selectivity. However, the mechanism for MSR has not been completely elucidated. It has been proposed that formate and methyl formate are possible intermediates in MSR. In this study, plane-wave density functional theory was used to investigate the role of methyl formate in MSR on PdZn. It is shown that methyl formate can indeed be formed by a reaction between formaldehyde and methoxyl. In the presence of surface OH species, methyl formate can further react to form formic acid, which can finally dehydrogenate to produce CO2. However, our calculations show that this hydrolysis process might have difficulties competing with desorption of methyl formate, which is weakly adsorbed on the PdZn surface. Our calculated results thus suggest a minor role for the methyl formate pathway in MSR. Interestingly, the methyl formate reaction pathway shares many similarities with the same process on copper, which is the traditional catalyst for MSR. The insights gained by studying the reaction mechanism on these two surfaces shed valuable light on designing future catalysts for the MSR process.

Figure optionsDownload high-quality image (134 K)Download as PowerPoint slideHighlights
► Methyl formate can be formed between formaldehyde and methoxyl on PdZn(1 1 1).
► Methyl formate plays a minor role in methanol steam reforming (MSR) process.
► Methyl formate pathway shares many similarities with the same process on Cu(1 1 1).
► The calculated mechanism sheds valuable light on designing catalysts for MSR.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Catalysis A: Chemical - Volume 356, April 2012, Pages 165–170
نویسندگان
, , ,