کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6616855 459629 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Shrinking annuli mechanism and stage-dependent rate capability of thin-layer graphite electrodes for lithium-ion batteries
ترجمه فارسی عنوان
مکانیسم کاهش انقباض و قابلیت سرعت وابسته به مرحله از الکترودهای گرافیت نازک برای باتری های لیتیوم یون
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی
The kinetic performance of graphite particles is difficult to deconvolute from half-cell experiments, where the influences of the working electrode porosity and the counter electrode contribute nonlinearly to the electrochemical response. Therefore, thin-layer electrodes of circa 1 μm thickness were prepared with standard, highly crystalline graphite particles to evaluate their rate capability. The performance was evaluated based on the different stage transitions. We found that the transitions toward the dense stages 1 and 2 with LiC6 in-plane density are one of the main rate limitations for charge and discharge. But surprisingly, the transitions toward the dilute stages 2L, 3L, 4L, and 1L progress very fast and can even compensate for the initial diffusion limitations of the dense stage transitions during discharge. We show the existence of a substantial difference between the diffusion coefficients of the liquid-like stages and the dense stages. We also demonstrate that graphite can be charged at a rate of ∼6 C (10 min) and discharged at 600 C (6 s) while maintaining 80% of the total specific charge for particles of 3.3 μm median diameter. Based on these findings, we propose a shrinking annuli mechanism, which describes the propagation of the different stages in the particle at medium and high rates. Besides the limited applicable overpotential during charge, this mechanism can explain the long-known but as yet unexplained asymmetry between the charge and discharge rate performance of lithium intercalation in graphite.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 106, 1 September 2013, Pages 149-158
نویسندگان
, ,