کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6665936 | 464343 | 2014 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology
ترجمه فارسی عنوان
پیش بینی رنگ و رطوبت برای سویا سبزیجات در طی خشک کردن با استفاده از تکنولوژی تصویربرداری هیپرسیونتری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
چکیده انگلیسی
Dried soybean is among the most popular snack foods consumed in numerous countries, and its quality has received considerable attention from processors and consumers. Color and moisture content are two critical parameters used to evaluate dried soybean quality. This study thus aimed to develop regression models for predicting the color and moisture content of soybeans simultaneously during the drying process using a hyperspectral imaging technique. Hyperspectral reflectance images were acquired from fresh and dried soybeans over the spectral region between 400 and 1000Â nm for 270 samples. After the automatic segmentation of soybean images at each wavelength based on an active contour model, mean reflectance and image entropy parameters were extracted and tested separately and in combination for predicting the color and moisture content of the processed soybeans. Predicting models were built using the partial least squares regression method. Better prediction results for both color and moisture content were achieved using the mean reflectance data (with correlation coefficients or RPÂ =Â 0.862 and root-mean-square errors of prediction or RMSEPÂ =Â 1.04 for color, as well as RPÂ =Â 0.971 and RMSEPÂ =Â 4.7% for moisture content) than when using entropy data (RPÂ =Â 0.839 and RMSEPÂ =Â 1.14 for color, as well as RPÂ =Â 0.901 and RMSEPÂ =Â 9.2% for moisture content). However, the integration of mean reflectance and entropy data did not show significant improvements in predicting the color or moisture content. Overall, a simple hyperspectral imaging technique involving rapid image preprocessing and single spectral features showed significant potential in measuring the color and moisture content of soybeans simultaneously during the drying process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Food Engineering - Volume 128, May 2014, Pages 24-30
Journal: Journal of Food Engineering - Volume 128, May 2014, Pages 24-30
نویسندگان
Min Huang, Qingguo Wang, Min Zhang, Qibing Zhu,