کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6679581 1428032 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An adaptive clustering-based genetic algorithm for the dual-gantry pick-and-place machine optimization
ترجمه فارسی عنوان
یک الگوریتم ژنتیک مبتنی بر خوشه بندی سازگار برای بهینه سازی ماشین جابجایی و مکان دوگانه
کلمات کلیدی
مدار چاپی مدار چاپی ماشین دوشاخه گیتی و محل قرار گیری، تخصیص کامپوننت، خوشه بندی الگوریتم ژنتیک،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
This research proposes an adaptive clustering-based genetic algorithm (ACGA) to optimize the pick-and-place operation of a dual-gantry component placement machine, which has two independent gantries that alternately place components onto a printed circuit board (PCB). The proposed optimization problem consists of several highly interrelated sub-problems, such as component allocation, nozzle and feeder setups, pick-and-place sequences, etc. In the proposed ACGA, the nozzle and component allocation decisions are made before the evolutionary search of a genetic algorithm to improve the algorithm efficiency. First, the nozzle allocation problem is modeled as a nonlinear integer programming problem and solved by a search-based heuristic that minimizes the total number of the dual-gantry cycles. Then, an adaptive clustering approach is developed to allocate components to each gantry cycle by evaluating the gantry traveling distances over the PCB and the component feeders. Numerical experiments compare the proposed ACGA to another clustering-based genetic algorithm LCO and a heuristic algorithm mPhase in the literature using 30 industrial PCB samples. The experiment results show that the proposed ACGA algorithm reduces the total gantry moving distance by 5.71% and 4.07% on average compared to the LCO and mPhase algorithms, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advanced Engineering Informatics - Volume 37, August 2018, Pages 66-78
نویسندگان
, , ,