کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
670252 1458793 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of nanofluid variable properties on natural convection in enclosures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Effect of nanofluid variable properties on natural convection in enclosures
چکیده انگلیسی

In this work, the heat transfer enhancement in a differentially heated enclosure using variable thermal conductivity and variable viscosity of Al2O3–water and CuO–water nanofluids is investigated. The results are presented over a wide range of Rayleigh numbers (Ra = 103–105), volume fractions of nanoparticles (0 ≤ φ ≤ 9%), and aspect ratios (½ ≤ A ≤ 2). For an enclosure with unity aspect ratio, the average Nusselt number of a Al2O3–water nanofluid at high Rayleigh numbers was reduced by increasing the volume fraction of nanoparticles above 5%. However, at low Rayleigh numbers, the average Nusselt number was slightly enhanced by increasing the volume fraction of nanoparticles. At high Rayleigh numbers, CuO–water nanofluids manifest a continuous decrease in Nusselt number as the volume fraction of nanoparticles is increased. However, the Nusselt number was not sensitive to the volume fraction at low Rayleigh numbers. The Nusselt number demonstrates to be sensitive to the aspect ratio. It was observed that enclosures, having high aspect ratios, experience more deterioration in the average Nusselt number when compared to enclosures having low aspect ratios. The variable thermal conductivity and variable viscosity models were compared to both the Maxwell-Garnett model and the Brinkman model. It was found that at high Rayleigh numbers the average Nusselt number was more sensitive to the viscosity models than to the thermal conductivity models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Thermal Sciences - Volume 49, Issue 3, March 2010, Pages 479–491
نویسندگان
, , , ,