کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6739004 1429071 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel unsupervised deep learning model for global and local health condition assessment of structures
ترجمه فارسی عنوان
یک مدل جدید یادگیری عمیق ناشناخته برای ارزیابی وضعیت بهداشت جهانی و محلی ساختارها
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
چکیده انگلیسی
A methodology is described for global and local health condition assessment of structural systems using ambient vibration response of the structure collected by sensors. The model incorporates synchrosqueezed wavelet transform, Fast Fourier Transform, and unsupervised deep Boltzmann machine to extract features from the frequency domain of the recorded signals. A probability density function is used to create a structural health index (SHI). This index can be used to assess both the global and local health conditions of the structure. A beauty of the proposed model is that it does not require costly experimental results to be obtained from a scaled version of the structure to simulate different damage states of the structure. Only ambient vibrations of the healthy structure are needed. In the absence of ambient vibrations, they can be simulated stochastically using structural properties and the probability theory. The effectiveness of the proposed model is illustrated employing experimental data obtained on a shake table in Hong Kong.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Structures - Volume 156, 1 February 2018, Pages 598-607
نویسندگان
, ,