کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6773310 513021 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage
ترجمه فارسی عنوان
توزیع اندازه تجمعی در یک التیزول گرمسیری زراعی با اصلاح زیست تخریب شده تحت عمل آوری خاک زراعی دستی معمولی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Biochar (or pyrogenic organic matter) is increasingly proposed as a soil amendment for improving fertility, carbon sequestration and reduction of greenhouse gas emissions. However, little is known about its effects on aggregation, an important indicator of soil quality and functioning. The aim of this study was to assess the effect of Eucalyptus wood biochar (B, pyrolyzed at 550 °C, at 0 or 2.5 t ha−1), green manure (T, from Tithonia diversifolia at 0, 2.5 or 5.0 t ha−1) and mineral nitrogen (U, urea, at 0, or 120 kg N ha−1) on soil respiration, aggregate size distribution and SOC in these aggregate size fractions in a 2-year field experiment on a low-fertility Ultisol in western Kenya under conventional hand-hoe tillage. Air-dry 2-mm sieved soils were divided into four fractions by wet sieving: Large Macro-aggregates (LM; >1000 μm); Small Macro-aggregates (SM, 250-1000 μm); Micro-aggregates (M, 250-53 μm) and Silt + Clay (S + C, < 53 μm). We found that biochar alone did not affect a mean weight diameter (MWD) but combined application with either T. diversifolia (BT) or urea (BU) increased MWD by 34 ± 5.2 μm (8%) and 55 ± 5.4 μm (13%), respectively, compared to the control (P = 0.023; n = 36). The B + T + U combination increased the proportion of the LM and SM by 7.0 ± 0.8%, but reduced the S + C fraction by 5.2 ± 0.23%. SOC was 30%, 25% and 23% in S + C, M and LM/SM fractions, and increased by 9.6 ± 1.0, 5.7 ± 0.8, 6.3 ± 1.1 and 4.2 ± 0.9 g kg−1 for LM, SM, M and S + C, respectively. MWD was not related to either soil respiration or soil moisture but decreased with higher SOC (R2 = 0.37, P = 0.014, n = 26) and increased with greater biomass production (R2 = 0.11, P = 0.045, n = 33). Our data suggest that within the timeframe of the study, biochar is stored predominantly as free particulate OC in the silt and clay fraction and promoted a movement of native SOC from larger-size aggregates to the smaller-sized fraction in the short-term (2 years).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil and Tillage Research - Volume 165, January 2017, Pages 190-197
نویسندگان
, , , , , , ,