کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
68321 | 48512 | 2006 | 8 صفحه PDF | دانلود رایگان |

Dioxomolybdenum(VI) complexes with the general formula [MoO2X2(N,N)] (X = Cl, OSiPh3) containing a chiral bidentate oxazoline ligand (N,N = 2,2′-bis[(4S)-4-benzyl-2-oxazoline]) have been prepared and characterised by 1H NMR, IR spectroscopy and thermogravimetric analysis. The bis(chloro) complex was heterogenised in the ordered mesoporous silica MCM-41 by direct grafting in dichloromethane. Elemental analysis and 29Si MAS NMR spectroscopy of the derivatised material indicated the presence of monopodally anchored species of the type MoO2[(–O)3SiO]Cl(N,N). The complex [MoO2Cl2(N,N)] and the derivatised material exhibited initial activities of 147 and 255 mol molMo−1 h−1, respectively, in the catalytic epoxidation of cyclooctene using tert-butylhydroperoxide (tBuOOH) as the oxidant, both yielding 1,2-epoxycyclooctane quantitatively within 24 h at 55 °C. The MCM-41 grafted catalyst could be recycled with no loss in performance with respect to the epoxide yields obtained for reaction times above 2 h. With trans-β-methylstyrene as the substrate, the bis(chloro) complex and the derivatised material gave epoxides as the only products with yields in the range of 56–64% after 24 h, but no catalytic asymmetric induction was observed. The triphenylsiloxy complex was more active than the bis(chloro) complex for the epoxidation of trans-β-methylstyrene, but the enantiomeric excess was negligible and the corresponding diols were also formed. For the reaction catalysed by the supported material, changing the oxidant from tBuOOH to cumene hydroperoxide greatly improved the catalytic activity but the enantiomeric excess continued very low and the corresponding diol was the main product.
The complexes [MoO2X2(N,N)] (X = Cl, OSiPh3) containing a chiral oxazoline ligand were prepared and characterised. In the catalytic epoxidation of cyclooctene or trans-β-methylstyrene by tert-butylhydroperoxide, the bis(chloro) complex gave good yields of epoxides, but very low asymmetric induction in the case of 1-phenylpropylene oxide formed from trans-β-methylstyrene. Grafting of the bis(chloro) complex onto the mesoporous silica MCM-41 gave a recyclable heterogeneous catalyst for the epoxidation of cyclooctene. Figure optionsDownload as PowerPoint slide
Journal: Journal of Molecular Catalysis A: Chemical - Volume 260, Issues 1–2, 15 December 2006, Pages 11–18