کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6856125 1437946 2018 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multiobjective optimization with ϵ-constrained method for solving real-parameter constrained optimization problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Multiobjective optimization with ϵ-constrained method for solving real-parameter constrained optimization problems
چکیده انگلیسی
This paper develops a novel algorithm to solve real-world constrained optimization problems, which hybridizes multiobjective optimization techniques with an ϵ-constrained method. First, a constrained optimization problem at hand is transformed into a bi-objective optimization problem. By the transformation, the advantage of multiobjective optimization techniques can be utilized in the constrained optimization area to balance population diversity and convergence. Meanwhile, the ϵ-constrained method is applied, which keeps the population evolving toward feasible region of the constrained optimization problem. In our proposed algorithm, the differential evolution is employed as a search engine to create offspring at each generation. Further, different combinations of mutation operators have been developed to improve the search ability and the population convergence at different stages. The performance of our approach is evaluated on 64 benchmark test functions from three popular test suits. Experimental results demonstrate that our proposed approach is capable of obtaining high-quality solutions on the majority of benchmark test functions, when compared with some other state-of-the-art constrained optimization algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 467, October 2018, Pages 15-34
نویسندگان
, , , ,