کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6856244 1437951 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aspect-based opinion ranking framework for product reviews using a Spearman's rank correlation coefficient method
ترجمه فارسی عنوان
چارچوب رتبهبندی براساس معیار برای بررسی محصول با استفاده از روش ضریب همبستگی رتبه اسپیرمن
کلمات کلیدی
نظر معادن، تجزیه و تحلیل احساسات، رتبه بندی رتبه بندی، رسانه های اجتماعی، تجسم، همبستگی رتبه اسپیرمن،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Opinion mining (also called sentiment analysis) is a type of natural language processing for computing people's opinions and emotions. It detects opinions from structured, semi-structured, and unstructured social media contents at different levels, such as the document, word, sentence, and aspect levels. In all these levels except aspect, opinion mining identifies the overall subjectivity or sentiment polarities. An aspect level is described as a part or an attribute of an entity. It exactly describes people's likes and dislikes in social media contents. In this paper, we propose a new framework for ranking products based on aspects. First, the system identifies the aspects of products. Second, the aspects and their opinion words are identified and visualized from the products' reviews using a Harel-Koren fast multiscale layout. Third, the network visualization is constructed and modeled, and a Spearman's rank correlation coefficient based opinion ranking method is applied to rank the products based on positive and negative ranks. Fourth, the supervised learning methods (Naïve Bayes, Maximum Entropy, and Support Vector Machine) are employed for the aspect-based sentiment classification task. Finally, the performance of the system is measured by the experimental results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 460–461, September 2018, Pages 23-41
نویسندگان
, ,