کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6856479 1437959 2018 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparison study of similarity measures for covering-based neighborhood classifiers
ترجمه فارسی عنوان
مطالعه مقایسه ای از اقدامات تشابه برای طبقه بندی محله های مبتنی بر پوشش
کلمات کلیدی
طبقه بندی، مجموعه خشن مبتنی بر پوشش، نماینده، اندازه گیری مشابهی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In data mining, neighborhood classifiers are valid not only for numeric data but also symbolic data. The key issue for a neighborhood classifier is how to measure the similarity between two instances. In this paper, we compare six similarity measures, Overlap, Eskin, occurrence frequency (OF), inverse OF (IOF), Goodall3, and Goodall4, for symbolic data under the framework of a covering-based neighborhood classifier. In the training stage, a covering of the universe is built based on the given similarity measure. Then a covering reduction algorithm is used to remove some of these covering blocks and determine the representatives. In the testing stage, the similarities between all unlabeled instances and representatives are computed. The closest representative or a few representatives determine the predicted class label of the unlabeled instance. We compared the six similarity measures in experiments on 15 University of California-Irvine (UCI) datasets. The results demonstrate that although no measure dominated the others in all scenarios, some measures had consistently high performance. The covering-based neighborhood classifier with appropriate similarity measures, such as Overlap, IOF, and OF, was better than ID3, C4.5, and the Naïve Bayes classifiers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 448–449, June 2018, Pages 1-17
نویسندگان
, , , , ,