کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6856604 1437967 2018 47 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised learning by cluster quality optimization
ترجمه فارسی عنوان
یادگیری بی نظیر با بهینه سازی کیفیت خوشه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Most clustering algorithms are designed to minimize a distortion measure which quantifies how far the elements of the clusters are from their respective centroids. The assessment of the results is often carried out with the help of cluster quality measures which take into account the compactness and separation of the clusters. However, these measures are not amenable to optimization because they are not differentiable with respect to the centroids even for a given set of clusters. Here we propose a differentiable cluster quality measure, and an associated clustering algorithm to optimize it. It turns out that the standard k-means algorithm is a special case of our method. Experimental results are reported with both synthetic and real datasets, which demonstrate the performance of our approach with respect to several standard quantitative measures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 436–437, April 2018, Pages 31-55
نویسندگان
, , ,