کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6857425 | 665202 | 2016 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generating automatic road network definition files for unstructured areas using a multiclass support vector machine
ترجمه فارسی عنوان
تولید فایل های تعریف شده در شبکه اتوماتیک برای مناطق غیر ساختاری با استفاده از یک دستگاه برش پشتیبانی چندکاره
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
چندکاره پشتیبانی ماشین های بردار پشتیبانی، نسل مسیر، فایل تعریف شبکه جاده، وسایل نقلیه مستقل، مناطق غیر ساختاری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, an innovative methodology for the generation of a Road Network Definition File (RNDF) using only an obstacle map as input is presented. This RNDF, which relies on a Multiclass Support Vector Machine(MSVM)-based trajectory generation method, will be used by an autonomous vehicle for transporting people in closed, unstructured areas for which no previous information is available, such as residential areas or industrial parks. The advantages of using this technique are the generation of a safe and smooth trajectory graph (making the trip more comfortable for riders by having trajectories pass as far away as possible from obstacles). Moreover, although there exist other previous Support Vector Machine (SVM) path planning methods, this is the first to use a MSVM. The advantages of doing so are that by obtaining a decision boundary for each object in the scene, all possible trajectories are computed and joined to form a graph. This is done through a combination of a Nearest-Neighbor Graph (NNG) and a Relative Neighborhood Graph (RNG). The method was tested with real data and in real conditions, yielding good results. At the end of the paper, results for two kinds of studies are presented. The first set of tests is intended to determine the best parameter values for the proposed methodology. In the second set of evaluations, the approach is compared with other state-of-the-art SVM-based methods, as well as with a classical approach, demonstrating that the method outperforms them in some aspects. Furthermore, the source code of the method is available for testing, as are some videos in which the output of the method is shown, including a comparison with previous methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 329, 1 February 2016, Pages 105-124
Journal: Information Sciences - Volume 329, 1 February 2016, Pages 105-124
نویسندگان
Néstor Morales, Jonay Toledo, Leopoldo Acosta,