کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6857597 | 665570 | 2015 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generalized type-2 fuzzy weight adjustment for backpropagation neural networks in time series prediction
ترجمه فارسی عنوان
تنظیم مقیاس فازی نوع 2 تعمیم یافته برای شبکه های عصبی برگشتی در پیش بینی های سری زمانی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شبکه عصبی، وزن فازی تعریف شده نوع 2، الگوریتم بازگشتی، سیستم فازی متداول نوع 2،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper the comparison of a proposed neural network with generalized type-2 fuzzy weights (NNGT2FW) with respect to the monolithic neural network (NN) and the neural network with interval type-2 fuzzy weights (NNIT2FW) is presented. Generalized type-2 fuzzy inference systems are used to obtain the generalized type-2 fuzzy weights and are designed by a strategy of increasing and decreasing an epsilon variable for obtaining the different sizes of the footprint of uncertainty (FOU) for the generalized membership functions. The proposed method is based on recent approaches that handle weight adaptation using type-1 and type-2 fuzzy logic. The approach is applied to the prediction of the Mackey-Glass time series, and results are shown to outperform the results produced by other neural models. Gaussian noise was applied to the test data of the Mackey-Glass time series for finding out which of the presented methods in this paper shows better performance and tolerance to noise.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 325, 20 December 2015, Pages 159-174
Journal: Information Sciences - Volume 325, 20 December 2015, Pages 159-174
نویسندگان
Fernando Gaxiola, Patricia Melin, Fevrier Valdez, Oscar Castillo,