کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6875021 | 1441467 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Implications of deep learning for the automation of design patterns organization
ترجمه فارسی عنوان
پیامدهای یادگیری عمیق برای اتوماسیون طراحی الگوهای طراحی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
الگوهای طراحی، یادگیری عمیق، ویژگی مجموعه، کارایی، طبقه بندی ها،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Though like other domains such as email filtering, web page classification, sentiment analysis, and author identification, the researchers have employed the text categorization approach to automate organization and selection of design patterns. However, there is a need to bridge the gap between the semantic relationship between design patterns (i.e. Documents) and the features which are used for the organization of design patterns. In this study, we propose an approach by leveraging a powerful deep learning algorithm named Deep Belief Network (DBN) which learns on the semantic representation of documents formulated in the form of feature vectors. We performed a case study in the context of a text categorization based automated system used for the classification and selection of software design patterns. In the case study, we focused on two main research objectives: 1) to empirically investigate the effect of feature sets constructed through the global filter-based feature selection methods besides the proposed approach, and 2) to evaluate the significant improvement in the classification decision (i.e. Pattern organization) of classifiers using the proposed approach. The adjustment of DBN parameters such as a number of hidden layers, nodes and iteration can aid a developer to construct a more illustrative feature set. The experimental promising results suggest the significance of the proposed approach to construct a more representative feature set and improve the classifier's performance in terms of organization of design patterns.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Parallel and Distributed Computing - Volume 117, July 2018, Pages 256-266
Journal: Journal of Parallel and Distributed Computing - Volume 117, July 2018, Pages 256-266
نویسندگان
Shahid Hussain, Jacky Keung, Arif Ali Khan, Awais Ahmad, Salvatore Cuomo, Francesco Piccialli, Gwanggil Jeon, Adnan Akhunzada,