کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6875199 1441587 2018 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining inline cache data to order inferred types in dynamic languages
ترجمه فارسی عنوان
معادله داده های حافظه درون خطی برای سفارش نوع های تعریف شده در زبان های پویا
کلمات کلیدی
استنتاج نوع، زبان های تایپی شده به صورت پویا مخفف درون خطی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
A simple approach that considers only the locally used interface of variables can identify potential classes for variables, but popular interfaces can generate a large number of false positives. We propose an approach called inline-cache type inference (ICTI) to augment the precision of fast and simple type inference algorithms. ICTI uses type information available in the inline caches during multiple software runs, to provide a ranked list of possible classes that most likely represent a variable's type. We evaluate ICTI through a proof-of-concept that we implement in Pharo Smalltalk. The analysis of the top-n+2 inferred types (where n is the number of recorded run-time types for a variable) for 5486 variables from four different software systems shows that ICTI produces promising results for about 75% of the variables. For more than 90% of variables, the correct run-time type is present among first six inferred types. Our ordering shows a twofold improvement when compared with the unordered basic approach, i.e., for a significant number of variables for which the basic approach offered ambiguous results, ICTI was able to promote the correct type to the top of the list.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Science of Computer Programming - Volume 161, 1 September 2018, Pages 105-121
نویسندگان
, , , ,