کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6937467 | 1449737 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automatic segmentation of cross-sectional coronary arterial images
ترجمه فارسی عنوان
تقسیم بندی اتوماتیک تصاویر شریان کرونری مقطع عرضی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
We present a novel approach to segment coronary cross-sectional images acquired using catheterization imaging techniques, i.e. intra-vascular ultrasound (IVUS) and optical coherence tomography (OCT). The proposed approach combines cross-sectional segmentation with longitudinal tracking in order to tackle various forms of imaging artifacts and to achieve consistent segmentation. A node-weighted directed graph is constructed on two consecutive cross-sectional frames with embedded shape constraints within individual cross-sections or frames and between consecutive frames. The intra-frame constraints are derived from a set of training samples and are embedded in both graph construction and its cost function. The inter-frame constraints are imposed by tracking the borders of interest across multiple frames. The coronary images are transformed from Cartesian coordinates to polar coordinates. Graph partition can then be formulated as searching an optimal interface in the node-weighted directed graph without user initialization. It also allows efficient parametrization of the border using radial basis function (RBF) and thus reduces the tracking of a large number of border points to a very few RBF centers. Moreover, we carry out supervised column-wise tissue classification in order to automatically optimize the feature selection. Instead of empirically assigning weights to different feature detectors, we dynamically and automatically adapt those weighting depending on the tissue compositions in each individual column of pixels. The proposed approach is applied to IVUS and OCT images. Both qualitative and quantitative results show superior performance of the proposed method compared to a number of alternative segmentation techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Vision and Image Understanding - Volume 165, December 2017, Pages 97-110
Journal: Computer Vision and Image Understanding - Volume 165, December 2017, Pages 97-110
نویسندگان
Ehab Essa, Xianghua Xie,