کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6952052 | 1451737 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mahalanobis distance based on fuzzy clustering algorithm for image segmentation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Conventional Fuzzy C-means (FCM) algorithm uses Euclidean distance to describe the dissimilarity between data and cluster prototypes. Since the Euclidean distance based dissimilarity measure only characterizes the mean information of a cluster, it is sensitive to noise and cluster divergence. In this paper, we propose a novel fuzzy clustering algorithm for image segmentation, in which the Mahalanobis distance is utilized to define the dissimilarity measure. We add a new regularization term to the objective function of the proposed algorithm, reflecting the covariance of the cluster. We experimentally demonstrate the effectiveness of the proposed algorithm on a generated 2D dataset and a subset of Berkeley benchmark images.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 43, August 2015, Pages 8-16
Journal: Digital Signal Processing - Volume 43, August 2015, Pages 8-16
نویسندگان
Xuemei Zhao, Yu Li, Quanhua Zhao,