کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
696230 890328 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Identification and modeling of nonlinear dynamical systems using a novel self-organizing RBF-based approach
چکیده انگلیسی

In this paper, a novel self-organizing radial basis function (SORBF) neural network is proposed for nonlinear identification and modeling. The proposed SORBF consists of simultaneous network construction and parameter optimization. It offers two important advantages. First, the hidden neurons in the SORBF neural network can be added or removed, based on the neuron activity and mutual information (MI), to achieve the appropriate network complexity and maintain overall computational efficiency for identification and modeling. Second, the model performance can be significantly improved through the parameter optimization. The proposed parameter-adjustment-based optimization algorithm, utilizing the forward-only computation (FOC) algorithm instead of the traditionally forward-and-backward computation, simplifies neural network training, and thereby significantly reduces computational complexity. Additionally, the convergence of the SORBF is analyzed in both the structure organizing process phase and the phase following the modification. Lastly, the proposed approach is applied to model and identify the nonlinear dynamical systems. Simulation results demonstrate its effectiveness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 48, Issue 8, August 2012, Pages 1729–1734
نویسندگان
, ,