کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
696356 890333 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian semiparametric Wiener system identification
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Bayesian semiparametric Wiener system identification
چکیده انگلیسی

We present a novel method for Wiener system identification. The method relies on a semiparametric, i.e. a mixed parametric/nonparametric, model of a Wiener system. We use a state-space model for the linear dynamical system and a nonparametric Gaussian process model for the static nonlinearity. We avoid making strong assumptions, such as monotonicity, on the nonlinear mapping. Stochastic disturbances, entering both as measurement noise and as process noise, are handled in a systematic manner. The nonparametric nature of the Gaussian process allows us to handle a wide range of nonlinearities without making problem-specific parameterizations. We also consider sparsity-promoting priors, based on generalized hyperbolic distributions, to automatically infer the order of the underlying dynamical system. We derive an inference algorithm based on an efficient particle Markov chain Monte Carlo method, referred to as particle Gibbs with ancestor sampling. The method is profiled on two challenging identification problems with good results. Blind Wiener system identification is handled as a special case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 49, Issue 7, July 2013, Pages 2053–2063
نویسندگان
, , ,