کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
696404 890334 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stochastically exponential stability and stabilization of uncertain linear hyperbolic PDE systems with Markov jumping parameters
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Stochastically exponential stability and stabilization of uncertain linear hyperbolic PDE systems with Markov jumping parameters
چکیده انگلیسی

This paper is concerned with the problem of robustly stochastically exponential stability and stabilization for a class of distributed parameter systems described by uncertain linear first-order hyperbolic partial differential equations (FOHPDEs) with Markov jumping parameters, for which the manipulated input is distributed in space. Based on an integral-type stochastic Lyapunov functional (ISLF), the sufficient condition of robustly stochastically exponential stability with a given decay rate is first derived in terms of spatial differential linear matrix inequalities (SDLMIs). Then, an SDLMI approach to the design of robust stabilizing controllers via state feedback is developed from the resulting stability condition. Furthermore, using the finite difference method and the standard linear matrix inequality (LMI) optimization techniques, recursive LMI algorithms for solving the SDLMIs in the analysis and synthesis are provided. Finally, a simulation example is given to demonstrate the effectiveness of the developed design method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 48, Issue 3, March 2012, Pages 569–576
نویسندگان
, , ,