کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
696715 890345 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-conservative matrix inequality conditions for stability/stabilizability of linear differential inclusions
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Non-conservative matrix inequality conditions for stability/stabilizability of linear differential inclusions
چکیده انگلیسی

This paper shows that the matrix inequality conditions for stability/stabilizability of linear differential inclusions derived from two classes of composite quadratic functions are not conservative. It is established that the existing stability/stabilizability conditions by means of polyhedral functions and based on matrix equalities are equivalent to the matrix inequality conditions. This implies that the composite quadratic functions are universal for robust, possibly constrained, stabilization problems of linear differential inclusions. In particular, a linear differential inclusion is stable (stabilizable with/without constraints) iff it admits a Lyapunov (control Lyapunov) function in these classes. Examples demonstrate that the polyhedral functions can be much more complex than the composite quadratic functions, to confirm the stability/stabilizability of the same system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 46, Issue 1, January 2010, Pages 190–196
نویسندگان
, ,