کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
696775 890347 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems
چکیده انگلیسی

An online adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem for continuous-time uncertain nonlinear systems. A novel actor–critic–identifier (ACI) is proposed to approximate the Hamilton–Jacobi–Bellman equation using three neural network (NN) structures—actor and critic NNs approximate the optimal control and the optimal value function, respectively, and a robust dynamic neural network identifier asymptotically approximates the uncertain system dynamics. An advantage of using the ACI architecture is that learning by the actor, critic, and identifier is continuous and simultaneous, without requiring knowledge of system drift dynamics. Convergence of the algorithm is analyzed using Lyapunov-based adaptive control methods. A persistence of excitation condition is required to guarantee exponential convergence to a bounded region in the neighborhood of the optimal control and uniformly ultimately bounded (UUB) stability of the closed-loop system. Simulation results demonstrate the performance of the actor–critic–identifier method for approximate optimal control.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 49, Issue 1, January 2013, Pages 82–92
نویسندگان
, , , , , ,