کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6973015 | 1453265 | 2016 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pipeline leakage detection and isolation: An integrated approach of statistical and wavelet feature extraction with multi-layer perceptron neural network (MLPNN)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ABCMLPNNANNLPGNPWCCRDWTSTFTSCADAMSEPNNFAR - بعداWavelet transform - تبدیل موجکDiscrete wavelet transform - تبدیل موجک گسستهShort-time Fourier transform - تبدیل کوتاه مدت فوریهFault detection and isolation - تشخیص گسل و انزواFDI - سرمایهگذاری مستقیم خارجیProbabilistic neural network - شبکه عصبی احتمالیArtificial Neural Network - شبکه عصبی مصنوعیMulti-layer perceptron neural network - شبکه عصبی پروپترون چند لایهSVM - ماشین بردار پشتیبانیSupport vector machine - ماشین بردار پشتیبانیNegative pressure wave - موج فشار منفیMean Square Error - میانگین مربع خطاFalse alarm rate - میزان هشدار اشتباهSupervisory control and data acquisition - نظارت کنترل و اکتساب داده هاStatistical features - ویژگی های آماریArtificial bee colony - کلنی زنبور عسل مصنوعیliquefied petroleum gas - گاز مایع شده
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Leakage diagnosis of hydrocarbon pipelines can prevent environmental and financial losses. This work proposes a novel method that not only detects the occurrence of a leakage fault, but also suggests its location and severity. The OLGA software is employed to provide the pipeline inlet pressure and outlet flow rates as the training data for the Fault Detection and Isolation (FDI) system. The FDI system is comprised of a Multi-Layer Perceptron Neural Network (MLPNN) classifier with various feature extraction methods including the statistical techniques, wavelet transform, and a fusion of both methods. Once different leakage scenarios are considered and the preprocessing methods are done, the proposed FDI system is applied to a 20-km pipeline in southern Iran (Goldkari-Binak pipeline) and a promising severity and location detectability (a correct classification rate of 92%) and a low False Alarm Rate (FAR) were achieved.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Loss Prevention in the Process Industries - Volume 43, September 2016, Pages 479-487
Journal: Journal of Loss Prevention in the Process Industries - Volume 43, September 2016, Pages 479-487
نویسندگان
Morteza Zadkarami, Mehdi Shahbazian, Karim Salahshoor,