کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7045144 | 1457089 | 2018 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Thermal management of GaN HEMT devices using serpentine minichannel heat sinks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
An experimental and numerical investigation of water-cooled serpentine rectangular minichannel heat sinks (MCHS) has been performed to assess their suitability for the thermal management of gallium nitride (GaN) high-electron-mobility transistors (HEMTs) devices. A Finite Element-based conjugate heat transfer model is developed, validated experimentally and used to determine the optimal minichannel width and number of minichannels for a case with a uniform heat flux of 100â¯W/cm2. The optimisation process uses a 30 point Optimal Latin Hypercubes Design of Experiments, generated from a permutation genetic algorithm, and accurate metamodels built using a Moving Least Square approach. A Pareto front is then constructed to enable the compromises available between designs with a low pressure drop and those with low thermal resistance to be explored and an appropriate minichannel width and number of minichannels to be chosen. These parameters are then used within conjugate heat transfer models of a serpentine MCHS with silicon, silicon carbide, diamond and graphene heat spreaders placed above a GaN HEMT heating source of area 4.8â¯Ãâ¯0.8â¯mm2, generating 1823â¯W/cm2. A nanocrystalline diamond (NCD) layer with thickness of 2â¯Âµm is mounted on the top surface of the GaN HEMT to function as a heat spreader to mitigate the hot spots. The effect of volumetric flow rate and heat spreader thickness on the chip temperature has been investigated numerically and each of these has been shown to be influential. For example, at a volumetric flow rate of 0.10â¯l/min, the maximum chip temperature can be reduced from 124.7â¯Â°C to 96.7â¯Â°C by employing a 25â¯Âµm thick graphene heat spreader attached to the serpentine MCHS together with a NCD layer compared with a serpentine MCHS without these heat spreaders.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Thermal Engineering - Volume 140, 25 July 2018, Pages 622-636
Journal: Applied Thermal Engineering - Volume 140, 25 July 2018, Pages 622-636
نویسندگان
Ahmed F. Al-Neama, Nikil Kapur, Jonathan Summers, Harvey M. Thompson,