کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7053942 1458013 2018 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Implicit numerical schemes for generalized heat conduction equations
ترجمه فارسی عنوان
طرح عددی نامتعادل برای معادلات هدایت حرارت عمومی
کلمات کلیدی
طرح نامنظم، زمینه های تغییر یافته، شرایط مرزی، ترمودینامیکی ناهمگلی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
چکیده انگلیسی
There are various situations where the classical Fourier's law for heat conduction is not applicable, such as heat conduction in heterogeneous materials (Both et al., 2016; Ván et al., 2017) or for modeling low-temperature phenomena (Kovács and Ván, 2015, 2016, 2018). In such cases, heat flux is not directly proportional to temperature gradient, hence, the role - and both the analytical and numerical treatment - of boundary conditions becomes nontrivial. Here, we address this question for finite difference numerics via a shifted field approach. Based on this ground, implicit schemes are presented and compared to each other for the Guyer-Krumhansl generalized heat conduction equation, which successfully describes numerous beyond-Fourier experimental findings. The results are validated by an analytical solution, and are contrasted to finite element method outcomes obtained by COMSOL.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 126, Part B, November 2018, Pages 1177-1182
نویسندگان
, , ,