کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7054179 1458016 2018 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
MHD mixed convection of viscoplastic fluids in different aspect ratios of a lid-driven cavity using LBM
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
MHD mixed convection of viscoplastic fluids in different aspect ratios of a lid-driven cavity using LBM
چکیده انگلیسی
In this paper, a two-dimensional simulation of mixed convection in an enclosure with differentially heated sidewalls in the presence of a uniform magnetic field has been performed for different aspect ratios of the enclosure while the enclosure is filled with a viscoplastic fluid. The viscoplastic fluid has been simulated by the exact Bingham model without any regulations. Lattice Boltzmann Method (LBM) has been applied to solve the problem. Heat transfer, fluid flow, and yielded/unyielded zones are investigated for certain pertinent parameters of the Reynolds number (Re = 100, 500, and 1000), the Hartmann number (Ha = 0, 2, and 5), the Bingham number (Bn = 1, 5, and 10), the aspect ratio (AR = 0.25, 1, and 4), and Eckert number (Ec = 0, 10-4,10-3, and 10-2) when the Grashof and prandtl numbers are fixed at Gr = 104 and Pr = 1; respectively. Results show that the increase in the Reynolds number augments the heat transfer and changes the extent of the unyielded section. Furthermore, for fixed studied parameters, an increase in the Bingham number decreases the heat transfer while enlarging the unyielded section. The rise of the aspect ratio alters the size and position of the unyielded/yielded zones. As Hartmann number rises, the heat transfer drops gradually and the unyielded parts increase significantly. The change of the magnetic field angle alters the heat transfer and the unyielded/yielded regions in the cavity. It was observed that the viscous dissipation and the joule heating parts in the energy equation based on the practical values of Eckret numbers have marginal effects on heat transfer and yielded/unyielded sections.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 124, September 2018, Pages 344-367
نویسندگان
, ,