کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7055796 1458046 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al2O3
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al2O3
چکیده انگلیسی
Low throughput is a major limitation for industrial level atomic layer deposition (ALD) applications. Spatial ALD is regarded as a promising solution to this issue. With numerical simulations, this paper studies an in-line spatial ALD reactor by investigating the effects of gap size, temperature, and pumping pressure on the flow and surface chemical deposition processes in Al2O3 ALD. The precursor intermixing is a critical issue in spatial ALD system design, and it is highly dependent on the flow and material distributions. By numerical studies, it's found that bigger gap, e.g., 2 mm, results in less precursor intermixing, but generates slightly lower saturated deposition rate. Wafer temperature is shown as a significant factor in both flow and surface deposition processes. Higher temperature accelerates the diffusive mass transport, which largely contributes to the precursor intermixing. On the other hand, higher temperature increases film deposition rate. Well-maintained pumping pressure is beneficial to decrease the precursor intermixing level, while its effect on the chemical process is shown very weak. It is revealed that the time scale of in-line spatial ALD cycle is in tens of milliseconds, i.e., ∼15 ms. Considering that the in-line spatial ALD is a continuous process without purging step, the ALD cycle time is greatly shortened, and the overall throughput is shown as high as ∼4 nm/s, compared to several nm/min in traditional ALD.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 96, May 2016, Pages 189-198
نویسندگان
, , ,