کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7108250 | 1460619 | 2018 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A lifting method for analyzing distributed synchronization on the unit sphere
ترجمه فارسی عنوان
یک روش بلند برای تحلیل هماهنگی توزیع شده در حوزه واحد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سیستم های چندگانه، توافق در زمینه، هماهنگ سازی نگرش، کنترل شبکه ها، کنترل سیستم های محدود، تثبیت سازگاری،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
This paper introduces a new lifting method for analyzing convergence of continuous-time distributed synchronization/consensus systems on the unit sphere. Points on the d-dimensional unit sphere are lifted to the (d+1)-dimensional Euclidean space. The consensus protocol on the unit sphere is the classical one, where agents move toward weighted averages of their neighbors in their respective tangent planes. Only local and relative state information is used. The directed interaction graph topologies are allowed to switch as a function of time. The dynamics of the lifted variables are governed by a nonlinear consensus protocol for which the weights contain ratios of the norms of state variables. We generalize previous convergence results for hemispheres. For a large class of consensus protocols defined for switching uniformly quasi-strongly connected time-varying graphs, we show that the consensus manifold is uniformly asymptotically stable relative to closed balls contained in a hemisphere. Compared to earlier projection based approaches used in this context such as the gnomonic projection, which is defined for hemispheres only, the lifting method applies globally. With that, the hope is that this method can be useful for future investigations on global convergence.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 96, October 2018, Pages 253-258
Journal: Automatica - Volume 96, October 2018, Pages 253-258
نویسندگان
Johan Thunberg, Johan Markdahl, Florian Bernard, Jorge Goncalves,