کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7116905 1461212 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Social media mining and visualization for point-of-interest recommendation
ترجمه فارسی عنوان
معادن رسانه های اجتماعی و تجسم برای توصیه های مورد علاقه
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
چکیده انگلیسی
With the rapid growth of location-based social networks (LBSNs), point-of-interest (POI) recommendation has become an important research problem. As one of the most representative social media platforms, Twitter provides various real-life information for POI recommendation in real time. Despite that POI recommendation has been actively studied, tweet images have not been well utilized for this research problem. State-of-the-art visual features like convolutional neural network (CNN) features have shown significant performance gains over the traditional bag-of-visual-words in unveiling the image's semantics. Unfortunately, they have not been employed for POI recommendation from social websites. Hence, how to make the most of tweet images to improve the performance of POI recommendation and visualization remains open. In this paper, we thoroughly study the impact of tweet images on POI recommendation for different POI categories using various visual features. A novel topic model called social media Twitter-latent Dirichlet allocation (SM-TwitterLDA) which jointly models five Twitter features, (i.e., text, image, location, timestamp and hashtag) is designed to discover POIs from the sheer amount of tweets. Moreover, each POI is visualized by representative images selected on three predefined criteria. Extensive experiments have been conducted on a real-life tweet dataset to verify the effectiveness of our method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Journal of China Universities of Posts and Telecommunications - Volume 24, Issue 1, February 2017, Pages 67-76, 86
نویسندگان
, , , ,