کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
72331 | 49017 | 2016 | 8 صفحه PDF | دانلود رایگان |

• The 15 wt%Mn-promoted ordered mesoporous Co3O4 showed an excellent WGSR activity.
• Mn promoter enhances a structural stability of the meso-Co3O4 by partially forming stable mixed metal oxides.
• Enhanced activity of Mn(5)/meso-Co3O4 is from stable mesopore structures with an easy mass transport.
The novel Mn-modified ordered mesoporous Co3O4 catalysts were investigated for water gas shift reaction (WGSR), which was synthesized through a nano-casting method using a hard template of KIT-6. An incipient wetness impregnation of Mn precursor with different concentrations was applied for preparing Mn-modified mesoporous Co3O4. On 15 wt%Mn impregnated mesoporous Co3O4 (denoted as Mn(15)/meso-Co3O4), WGSR activity was found to be higher among the tested catalysts due to a higher structural stability of the Co3O4 mesopores with a larger surface area. The Mn(15)/meso-Co3O4 also showed stable ordered mesopore structures with an exposed larger number of active metallic cobalt sites on the surfaces even after WGSR. The structural stability was mainly attributed to the strong and stable interactions between cobalt oxides and manganese oxides. With an optimum amount of Mn promoter, Mn plays an important role as a structural stabilizer of the mesoporous Co3O4 as well as an electron modifier by enhancing redox cycle properties of cobalt species and fast mass transport in mesopores.
Figure optionsDownload as PowerPoint slide
Journal: Microporous and Mesoporous Materials - Volume 221, February 2016, Pages 204–211