کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7233708 | 1470977 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Biosensing enhancement using passive mixing structures for microarray-based sensors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The combination of microarray technologies with microfluidic sample delivery and real-time detection methods has the capability to simultaneously monitor 10-1000Â s of biomolecular interactions in a single experiment. Despite the benefits that microfluidic systems provide, they typically operate in the laminar flow regime under mass transfer limitations, where large analyte depletion layers act as a resistance to analyte capture. By locally stirring the fluid and delivering fresh analyte to the capture spot, the use of passive mixing structures in a microarray environment can reduce the negative effects of these depletion layers and enhance the sensor performance. Despite their large potential, little attention has been given to the integration of these mixing structures in microarray sensing environments. In this study, we use passive mixing structures to enhance the mass transfer of analyte to a capture spot within a microfluidic flow cell. Using numerical methods, different structure shapes and heights were evaluated as means to increase local fluid velocities, and in turn, rates of mass transfer to a capture spot. These results were verified experimentally via the real-time detection of 20-mer ssDNA for an array of microspots. Both numerical and experimental results showed that a passive mixing structure situated directly over the capture spot can significantly enhance the binding rate of analyte to the sensing surface. Moreover, we show that these structures can be used to enhance mass transfer in experiments regarding an array of capture spots. The results of this study can be applied to any experimental system using microfluidic sample delivery methods for microarray detection techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 54, 15 April 2014, Pages 506-514
Journal: Biosensors and Bioelectronics - Volume 54, 15 April 2014, Pages 506-514
نویسندگان
N. Scott Jr., José-Israel MartÃnez-López, Markéta Bocková, Pavel Adam, Victor Coello, Héctor R. Siller, JiÅÃ Homola,