| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 7354705 | 1477195 | 2018 | 18 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Large deviations for risk measures in finite mixture models
												
											ترجمه فارسی عنوان
													انحرافات بزرگ برای اندازه گیری خطر در مدل های مخلوط محدود 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آمار و احتمال
												
											چکیده انگلیسی
												Due to their heterogeneity, insurance risks can be properly described as a mixture of different fixed models, where the weights assigned to each model may be estimated empirically from a sample of available data. If a risk measure is evaluated on the estimated mixture instead of the (unknown) true one, then it is important to investigate the committed error. In this paper we study the asymptotic behaviour of estimated risk measures, as the data sample size tends to infinity, in the fashion of large deviations. We obtain large deviation results by applying the contraction principle, and the rate functions are given by a suitable variational formula; explicit expressions are available for mixtures of two models. Finally, our results are applied to the most common risk measures, namely the quantiles, the Expected Shortfall and the shortfall risk measure.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Insurance: Mathematics and Economics - Volume 80, May 2018, Pages 84-92
											Journal: Insurance: Mathematics and Economics - Volume 80, May 2018, Pages 84-92
نویسندگان
												Valeria Bignozzi, Claudio Macci, Lea Petrella, 
											