کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7357818 1478564 2018 54 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data
ترجمه فارسی عنوان
یک برآوردگر ماتریس کوواریانس یکپارچه برای داده های بازده دارایی غیر پارامتری
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
چکیده انگلیسی
In high-frequency data analysis, the extreme eigenvalues of a realized covariance matrix are biased when its dimension p is large relative to the sample size n. Furthermore, with non-synchronous trading and contamination of microstructure noise, we propose a nonparametrically eigenvalue-regularized integrated covariance matrix estimator (NERIVE) which does not assume specific structures for the underlying integrated covariance matrix. We show that NERIVE is positive definite in probability, with extreme eigenvalues shrunk nonlinearly under the high dimensional framework p∕n→c>0. We also prove that in portfolio allocation, the minimum variance optimal weight vector constructed using NERIVE has maximum exposure and actual risk upper bounds of order p−1∕2. Incidentally, the same maximum exposure bound is also satisfied by the theoretical minimum variance portfolio weights. All these results hold true also under a jump-diffusion model for the log-price processes with jumps removed using the wavelet method proposed in Fan and Wang (2007). They are further extended to accommodate the existence of pervasive factors such as a market factor under the setting p3∕2∕n→c>0. The practical performance of NERIVE is illustrated by comparing to the usual two-scale realized covariance matrix as well as some other nonparametric alternatives using different simulation settings and a real data set.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 206, Issue 1, September 2018, Pages 226-257
نویسندگان
, ,