کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
74408 49090 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel mesostructured alumina–ceria–zirconia tri-component nanocomposite with high thermal stability and its three-way catalysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
A novel mesostructured alumina–ceria–zirconia tri-component nanocomposite with high thermal stability and its three-way catalysis
چکیده انگلیسی

A polycopolymer-assisted self-assembly process under hydrothermal condition has been developed for preparing mesostructured alumina–ceria–zirconia tri-component nanocomposite. This composite showed a uniform worm-like mesoporous structure with nanocrystallite framework, sharp pore-size distribution, high surface area (>180 m2/g), high thermal stability (>1000 °C) and excellent oxygen storage capacity (OSC). Small amounts of precious metals can be homogeneously loaded into the worm-like pore structure, which could maintain their high dispersity even when calcined at 1000 °C. Such a nanocomposite catalyst showed high performance for the three-way exhaust catalytic conversion with low ignition temperatures at engine start-up and high thermal stability against aging.

A mesostructured alumina–ceria–zirconia tri-component nanocomposite of uniform worm-like meoporous structure with high thermal stability and excellent oxygen storage capacity (OSC) has been synthesized. Small amounts of precious metals can be homogeneously loaded into the worm-like pore structure, which could maintain their high dispersity even when calcined at 1000 °C..Figure optionsDownload as PowerPoint slideHighlights
► Mesostructured Al2O3–CeO2–ZrO2 tricomponent nanocomposite has been synthesized.
► This nanocomposite has uniform worm-like mesopores and high thermal stability.
► Alumina doping greatly enhances the oxygen storage/release capacity.
► Noble metals can be homogeneously loaded into the worm-like pore structure.
► Noble metal nanoparticles can maintain their high dispersity even at 1000 °C.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microporous and Mesoporous Materials - Volume 143, Issues 2–3, September 2011, Pages 368–374
نویسندگان
, , , , ,