کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
74585 49095 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synthesis of morphology-controlled mesoporous transition aluminas derived from the decomposition of alumina hydrates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Synthesis of morphology-controlled mesoporous transition aluminas derived from the decomposition of alumina hydrates
چکیده انگلیسی

Aluminum hydroxides were synthesized through the acidification of sodium aluminate solution using single organic diester or diacid as pH adjustor and aluminum chelating agent. The obtained alumina hydrates are investigated by XRD, SEM, IR and TG. Bayerite firstly formed at room temperature, and its morphology greatly varied with the pH adjustors used, which probably attributes to different kinetics of the acidification. The bayerite can evolve to gibbsite and boehmite after the hydrothermal treatment at 100 °C and 145 °C, respectively, where these alumina hydrates show diverse morphologies. After the calcination, these alumina hydrates of bayerite, gibbsite and boehmite could pseudomorphically transform to the corresponding η-, χ- and γ-aluminas, respectively, exhibiting different structural and textural properties. Interestingly, the transition aluminas derived from the aluminum tri-hydroxides, bayerite and gibbsite, both display locally organized mesopores, while no such meso-structure can be observed in γ-alumina obtained from the aluminum mono-hydroxide, boehmite. The changes of bayerite during calcination are investigated detailed. The dehydration of non-porous bayerite accompanied with the formation of meso-structured transition aluminas, where the meso-structure becomes more and more clearly defined and pore size expands with the calcination temperature increasing.

Figure optionsDownload as PowerPoint slideHighlights
► Morphology-controlled aluminum hydroxides were synthesized.
► The pH adjustor affects the morphology of aluminum hydroxides.
► The alumina hydrates pseudomorphically transformed to corresponding aluminas.
► The pore size of aluminas expands with the calcination temperature increasing.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microporous and Mesoporous Materials - Volume 147, Issue 1, January 2012, Pages 167–177
نویسندگان
, , , ,