کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7477248 1485202 2018 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of tar compounds and quantification of naphthalene from thermal treatment of household biowaste
ترجمه فارسی عنوان
تجزیه و تحلیل ترکیبات ترود و تعیین مقدار نفتالین از روش حرارتی زباله های خانگی
کلمات کلیدی
ضایعات طبیعی، کالیبراسیون، کروماتوگرافی گازی، بازتاب کلی کاهش یافته، نمونه برداری تار،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Household biowaste represent the organic fraction of municipal solid waste and are an underutilized resource. Although previous studies have performed pyrolysis of organic waste, the vast majority has been on specific presorted feedstock or conventional lignocellulosic streams. Therefore, there is a lack of pyrolysis applications on representative food waste as retrieved from households and this can be attributed primarily to their high water content and their degradability. But via the intermediate step of drying, long-term storage and thermal treatment have become possible. In the framework of this study, household biowaste were pyrolyzed for the production of carbonaceous materials with a main focus on the analysis of produced tar compounds. Tars can be corrosive or cause clogging and disrupt the operation of pyrolysis and gasification plants. Their analysis has faced several difficulties due to inconsistency in the methodologies that have been applied by various groups. The tar protocol has provided a solid framework for consistent analysis of tars but until now has been solely used for the case of gasification. This study aimed to apply the tar protocol for pyrolysis and to enhance the detectability of the method for a wider range of tars by means of elemental analysis, attenuated total reflectance (ATR) and gas chromatography-mass spectrometry (GC-MS). GC- MS was performed by means of a specific column for PAHs identification and calibration methods were developed for the proper quantification of naphthalene which is the dominant tar compound. The results of the analysis showed that naphthalene concentration increased from torrefaction to carbonization but then decreased significantly for high temperature pyrolysis at 860 °C.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 216, 15 June 2018, Pages 153-159
نویسندگان
, , , , , ,