کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7481404 1485246 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Insights into the adsorption capacity and breakthrough properties of a synthetic zeolite against a mixture of various sulfur species at low ppb levels
چکیده انگلیسی
The sorptive removal properties of a synthetic A4 zeolite were evaluated against sulfur dioxide (SO2) and four reference reduced sulfur compounds (RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethyl sulfide (DMS, (CH3)2S), and dimethyl disulfide (DMDS, CH3SSCH3). To this end, a sorbent bed of untreated (as-received) A4 zeolite was loaded with gaseous standards at four concentration levels (10-100 part-per-billion (ppb (v/v)) at four different volumes (0.1, 0.2, 0.5, and 1 L increments) in both increasing (IO: 0.1-1.0 L) and decreasing volume order (DO: 1.0 to 0.1 L). Morphological properties were characterized by PXRD, FTIR, and BET analysis. The removal efficiency of SO2 decreased from 100% for all concentrations at 0.1 L (initial sample volume) to ∼82% (100 ppb) or ∼96% (10 ppb) at 3.6 L. In contrast, removal efficiency of RSC was near 100% at small loading volumes but then fell sharply, irrespective of concentration (10-100 ppb) (e.g., 32% (DMS) to 52% (H2S) at 100 ppb). The adsorption capacity of zeolite, if expressed in terms of solid-gas partition coefficient (e.g., similar to the Henry's law constant (mmol kg−1 Pa−1)), showed moderate variabilities with the standard concentration levels and S compound types such as the minimum of 2.03 for CH3SH (at 20 ppb) to the maximum of 13.9 for SO2 (at 10 ppb). It clearly demonstrated a notable distinction in the removal efficiency of A4 zeolite among the different S species in a mixture with enhanced removal efficiency of SO2 compared to the RSCs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 166, 15 January 2016, Pages 484-492
نویسندگان
, , , , , ,