کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7499370 | 1485874 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Vehicular emissions prediction with CART-BMARS hybrid models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
علوم زیست محیطی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Vehicular emission models play a key role in the development of reliable air quality modeling systems. To minimize uncertainties associated with these models, it is essential to match the high-resolution requirements of emission models with up-to-date information. However, these models are usually based on average trip speed, not on environmental parameters like ambient temperature, and vehicle's motion characteristics, such as speed, acceleration, load and power. This contributes to the degradation of its predictive performance. In this paper, we propose to use the non-parametric Classification and Regression Trees (CART), the Boosting Multivariate Adaptive Regression Splines (BMARS) algorithm and a combination of them in hybrid models to improve the accuracy of vehicular emission prediction using on-board measurements and the chassis dynamometer testing. The experimental comparison between the proposed CART-BMARS hybrid model with the BMARS and artificial neural networks (ANNs) algorithms demonstrates its effectiveness and efficiency in estimating vehicular emissions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part D: Transport and Environment - Volume 49, December 2016, Pages 188-202
Journal: Transportation Research Part D: Transport and Environment - Volume 49, December 2016, Pages 188-202
نویسندگان
S.D. Oduro, Q.P. Ha, H. Duc,