کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
758760 | 896449 | 2011 | 8 صفحه PDF | دانلود رایگان |

A nonlinear finite difference scheme is studied for solving the Kuramoto–Tsuzuki equation. Because the maximum estimate of the numerical solution can not be obtained directly, it is difficult to prove the stability and convergence of the scheme. In this paper, we introduce the Brouwer-type fixed point theorem and induction argument to prove the unique existence and convergence of the nonlinear scheme. An iterative algorithm is proposed for solving the nonlinear scheme, and its convergence is proved. Based on the iterative algorithm, some linearized schemes are presented. Numerical examples are carried out to verify the correction of the theory analysis. The extrapolation technique is applied to improve the accuracy of the schemes, and some interesting results are obtained.
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 16, Issue 6, June 2011, Pages 2620–2627