کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7591811 | 1492107 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A simple and practical control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry
ترجمه فارسی عنوان
یک کنترل ساده و عملی از صحت نمونه های شاهدانه آلی بر اساس استفاده از الگوریتم های یادگیری ماشین و عناصر ردیابی با استفاده از طیف سنجی جرم پلاسما همراه با القایی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
A practical and easy control of the authenticity of organic sugarcane samples based on the use of machine-learning algorithms and trace elements determination by inductively coupled plasma mass spectrometry is proposed. Reference ranges for 32 chemical elements in 22 samples of sugarcane (13 organic and 9 non organic) were established and then two algorithms, Naive Bayes (NB) and Random Forest (RF), were evaluated to classify the samples. Accurate results (>90%) were obtained when using all variables (i.e., 32 elements). However, accuracy was improved (95.4% for NB) when only eight minerals (Rb, U, Al, Sr, Dy, Nb, Ta, Mo), chosen by a feature selection algorithm, were employed. Thus, the use of a fingerprint based on trace element levels associated with classification machine learning algorithms may be used as a simple alternative for authenticity evaluation of organic sugarcane samples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Food Chemistry - Volume 184, 1 October 2015, Pages 154-159
Journal: Food Chemistry - Volume 184, 1 October 2015, Pages 154-159
نویسندگان
Rommel M. Barbosa, Bruno L. Batista, Camila V. Barião, Renan M. Varrique, Vinicius A. Coelho, Andres D. Campiglia, Fernando Jr.,