کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7606303 1492945 2018 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations
چکیده انگلیسی
Petroleum coke (petcoke) contains high carbon and low ash qualities, but often with an undesirably high sulfur content. High-temperature (>1000 K) calcination produces a coke, suitable for many industrial uses, with an acceptable S content. Here the sulfur removal behavior during high-temperature pyrolysis was evaluated by combining high-temperature thermogravimetric analysis with product gas mass spectrometry (TG-MS), and reactive molecular dynamics (ReaxFF) simulations. From the TG-MS data the pyrolysis temperature of >1000 K significantly affected the S rejection. Three petcokes under 1273-1773 K in six different particle sizes (≤6 mm) were pyrolyzed to determine the desulfurization initiation temperature and desulfurization extent. A non-uniform behavior across the particle size ranges was obtained. Six Qingdao petcoke samples with cut sizes of <0.038, 0.07-0.05, 0.11-0.09, 0.25-0.15, 1.18-0.88, and 5.00-6.00 mm all achieved a similar desulfurization extent (∼80%) at >1673 K. However, considerable variability was shown in larger particles (1.18-0.88 and 5.00-6.00 mm) for Qingdao, Zhenhai, and Qilu petcoke between 1473 and 1773 K. The products included water (presumably from coke quench, 350-410 K), volatiles (430-550 K), CO2 and H2 (>800 K, mainly), CO and SO2 (>1200 K, mainly), and trace quantities of CS2 (>1400 K). The stable sulfur-containing products of this petcoke during high-temperature pyrolysis were SO2 and trace amounts of CS2. However, COS and H2S pyrolysis products were absent or below the detection limits. The pyrolysis behavior was explored using ReaxFF on a macromolecular petcoke structure with the S atoms in thiophene-like functional groups. The mechanism of S loss, under the simulation conditions, involved molecular rearrangement and thermolysis into intermediate states (C2S and CNS) and COS. These were explored for 250 ps for 3000, 3500, and 4000 K with the constant volume/temperature (NVT) ensemble. The sulfur removal transformation during pyrolysis is generally followed: thiophene sulfur → COS, C2S, or CNS → HS → SO2 or CS2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Analytical and Applied Pyrolysis - Volume 132, June 2018, Pages 134-142
نویسندگان
, , , , ,