کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
76192 | 49134 | 2008 | 6 صفحه PDF | دانلود رایگان |

Mesoporous CeO2 particles are synthesized using a sol–gel method involving Pluronic P123 or F127 tri-block copolymer and cerium acetate hydrate. Transmission electron microscopy reveals well defined meso-channels of about 10 nm in diameter and a wall framework consisting of highly oriented polycrystalline CeO2. The [0 0 1] axis of the crystals is found to be aligned parallel to the meso-channels, and lattice coherency of [1 0 0] or [0 1 0] also exists in perpendicular plane to the channel. A cooperative self-assembly of the tri-block copolymer and Ce4+ species is believed to occur, along with the precipitation of nano-crystalline CeO2 in the sol–gel process. It is proposed that the preferential orientation may result from a favored linkage of the low-order Miller indices {0 0 1} planes of CeO2 to the PEO segment in the PEO–PPO–PEO tri-block copolymer micelles. The unique structural characteristics of meso-CeO2 appear to contribute to maintaining the pore integrity during the synthesis as well as in a post-fabrication in situ TEM heating test.
Journal: Microporous and Mesoporous Materials - Volume 115, Issue 3, 1 November 2008, Pages 247–252